[3HRS]

MAXIMUM MARKS 80

 Question no.,1 is compulsory. Write any three questions from remaining five questions. Assume suitable data where ever necessary. Draw diagrams wherever required. 		
a] Define and explain following terms Oherence Bandwidth ii) Coherence time iii) Doppler spread	0	5
b] Why 120degree sectorization is preferred over 60degree sector technology.discuss in detail with reference to S/I calculations and		
C] What is OVSF in WCDMA what is its advantage over fixed spre	eading 05	
d] What is timing advance in GSM explain in detail	05	
2 a Discuss the various types of Handoffs from 2G to 4G with refetechnologies. 10 B How is the cell search and synchronization achieved in 3G?	erence to	
3. a] Draw and explain 3G reference architecture	10	
b] For a Rayleigh fading signal, compute the positive going level p=1. The maximum Doppler frequency (fm) is 20 Hz. What is the maximum velocity of the mobile for this Doppler freq the carrier frequency is 900 MHz?	3	
4.a] Draw and explain protocol architecture of GPRS	10	
b] Compare OFDMA and MC-CDMA techniques.	10	
a] Explain RPE- LTP speech coder in GSM b] What is the software-defined radio	10	
system?	10	

6. Write short note on (any

20

- a] Cognitive Transceiver Architecture
 b] Spreading codes used in CDMA
 c] Adaptive multi antenna Techniques

Q. P. Code: 36056

(3 Hours)

TOTAL MARKS: 80

(1) Question No.1 is COMPULSORY

- (2) Attempt any three questions from remaining questions
- (3) Figures to the right indicate full marks

1.	(a) Define Spontaneous Emission, Stimulated Emission and Quantum Efficiency	5	
	(b) Define Cross talk and Solitons	5	
	(c) What is OTDR. Draw its response graph with details.	5	
	(d) Explain three operating windows in optical communication	5	
2.	(a) What are the desirable requirements of a good fiber optic connector? What are the less schemes for coupling improvements?	nsing 10	
	(b)List different types of fiber fabrication techniques and explain any one of them.	10	
3.	(a) Explain different types of Front End Amplifier in Optical Receiver.	7	
	(b) Differentiate PIN and APD. Derive an expression for Responsivity of PIN diode.	8	
	(c) Explain Link Budget Analysis in Optical Communication	5	
4.	(a) Differentiate Intermodal and Intramodal Dispersion. Derive an expression for Pulse Spreading in Intermodal Dispersion.	10	
	(b) Consider a Graded Index Multimode Fiber for which the index profile α =2.0, the core		
	index n_1 =1.480, the core cladding index difference Δ =0.01 and core radius a=25 μ m.		
	If the radius of curvature of the fiber is R=1cm, What percentage of the modes remain		
	in the fiber at a 1300nm wavelength?	10	
5	(a) What is Four Wave Mixing? Explain in brief WDM in optical communication	10	
	(b) Explain in detail structure of SONET/SDH network.	10	
6.	Write a short note on any two	20	
	(a) OTDM		
	(b) Optical Access Network		
	(c) Fault Management		
	(d) Wavelength Stabilization		

EE3BC0983D326D114F812BDFD21FF3AA

JEXTC /Sem_TPaper / Subject Code: 42404 / Microwave & Radar Engineering / NoV - 2019
(OTR)

		(3 Hours) Max Marks: 8	0
N:B:	2. C 3. A	uestion no. 1 is compulsory. Out of remaining questions, attempt any three questions. Assume suitable additional data if required. Figures on the right hand side indicate full marks.	
Q.1	(a) (b). (c) (d)	Explain Doppler shift and its role in pulsed and CW radar. How does a slow—wave structure operate? What are the advantages of more than two cavities in a Klystron? Name four categories of transmission lines. What restricts the use of two-wire line in the microwave region?	[5] [5] [5] [5]
Q.2	(a) (b)	What are the relationships of the signal, pump and idler frequencies for a parametric amplifier with an idler circuit operated as a degenerate amplifier? Derive equation for phase velocity, cutoff frequency, cutoff wavelength and field equations for rectangular waveguide.	
Q.3	(a)	Explain the working of TWT. A helix travelling wave tube operates at 4GHz under a beam voltage 10KV and beam current of 500 mA. If the helix impedance is 25 ohms and the interaction length is 20 cm. Find the output power gain in decibels.	[10]
	(b)	With the help of suitable diagram explain mechanism of operation of Magnetron. What is mode jumping in Magnetron? How are various modes separated?	[10]
Q.4	(a)	Explain how avalanche devices operate. Name three devices that use the avalanche mode for their operation.	[10]
	(b)	Antenna with impedance 40+j30 ohms is to be matched to 100 ohms lossless line with a shorted stub. Determine: i) Required stub admittance ii) Distance between stub and antenna iii) Stub length iv) Standing wave ratio between stub and load, stub and source, along the stub.	[10]
50 S		(use smith chart).	
Q.5	(a)	Derive the Radar range equation as governed by minimum detectable signal to noise ratio.	[10]
	(b)	With a suitable block diagram explain the working of a conical scan tracking radar	[10]
Q.6		Write short note on: i) Modes in Gunn diode ii) High electron mobility transistors iii) Instrument landing system	[07] [07] [06]